13 research outputs found

    Prospect and potential of Burkholderia sp. against Phytophthora capsici Leonian: a causative agent for foot rot disease of black pepper

    Get PDF
    Foot rot disease is a very destructive disease in black pepper in Malaysia. It is caused by Phytophthora capsici Leonian, which is a soilborne pathogenic protist (phylum, Oomycota) that infects aerial and subterranean structures of many host plants. This pathogen is a polycyclic, such that multiple cycles of infection and inoculum production occur in a single growing season. It is more prevalent in the tropics because of the favourable environmental conditions. The utilization of plant growth-promoting rhizobacteria (PGPR) as a biological control agent has been successfully implemented in controlling many plant pathogens. Many studies on the exploration of beneficial organisms have been carried out such as Pseudomonas fluorescens, which is one of the best examples used for the control of Fusarium wilt in tomato. Similarly, P. fluorescens is found to be an effective biocontrol agent against the foot rot disease in black pepper. Nowadays there is tremendous novel increase in the species of Burkholderia with either mutualistic or antagonistic interactions in the environment. Burkholderia sp. is an indigenous PGPR capable of producing a large number of commercially important hydrolytic enzymes and bioactive substances that promote plant growth and health; are eco-friendly, biodegradable and specific in their actions; and have a broad spectrum of antimicrobial activity in keeping down the population of phytopathogens, thus playing a great role in promoting sustainable agriculture today. Hence, in this book chapter, the potential applications of Burkholderia sp. to control foot rot disease of black pepper in Malaysia, their control mechanisms, plant growth promotion, commercial potentials and the future prospects as indigenous PGPR were discussed in relation to sustainable agriculture

    Nematicidal Bacteria Associated to Pinewood Nematode Produce Extracellular Proteases

    Get PDF
    Bacteria associated with the nematode Bursaphelenchus xylophilus, a pathogen of trees and the causal agent of pine wilt disease (PWD) may play a role in the disease. In order to evaluate their role (positive or negative to the tree), strains isolated from the track of nematodes from infected Pinus pinaster trees were screened, in vitro, for their nematicidal potential. The bacterial products, from strains more active in killing nematodes, were screened in order to identify and characterize the nematicidal agent. Forty-seven strains were tested and, of these, 21 strains showed capacity to produce extracellular products with nematicidal activity. All Burkholderia strains were non-toxic. In contrast, all Serratia strains except one exhibited high toxicity. Nematodes incubated with Serratia strains showed, by SEM observation, deposits of bacteria on the nematode cuticle. The most nematicidal strain, Serratia sp. A88copa13, produced proteases in the supernatant. The use of selective inhibitors revealed that a serine protease with 70 kDa was majorly responsible for the toxicity of the supernatant. This extracellular serine protease is different phylogenetically, in size and biochemically from previously described proteases. Nematicidal assays revealed differences in nematicidal activity of the proteases to different species of Bursaphelenchus, suggesting its usefulness in a primary screen of the nematodes. This study offers the basis for further investigation of PWD and brings new insights on the role bacteria play in the defense of pine trees against B. xylophilus. Understanding all the factors involved is important in order to develop strategies to control B. xylophilus dispersion.This research was partially supported by Direcção Regional de Florestas, Fundo Florestal Permanente and Autoridade Florestal Nacional, through a national project ‘O nemátode-da-madeira-do-pinheiro (NMP), Bursaphelenchus xylophilus’ and by FEDER funds through the Programa Operacional Factores de Competitividade – COMPETE and by national funds through the Fundação para a Ciência e Tecnologia (FCT), Portugal, under the project PTDC/AGR-CFL/115373/2009. D.N.P. was supported by FCT, Portugal, graduate fellowship SFRH/BD/61311/2009. G.P. was supported by FCT, Portugal, fellowship PTDC/AGR-CFL/115373/2009

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity.Peer reviewe

    Understanding the mechanism involved in pgpr-mediated growth promotion and suppression of biotic and abiotic stress in plants

    No full text
    corecore